Heat-Polymerized Resin Containing Dimethylaminododecyl Methacrylate Inhibits Candida albicans Biofilm

نویسندگان

  • Hui Chen
  • Qi Han
  • Xuedong Zhou
  • Keke Zhang
  • Suping Wang
  • Hockin H. K. Xu
  • Michael D. Weir
  • Mingye Feng
  • Mingyun Li
  • Xian Peng
  • Biao Ren
  • Lei Cheng
چکیده

The prevalence of stomatitis, especially caused by Candida albicans, has highlighted the need of new antifungal denture materials. This study aimed to develop an antifungal heat-curing resin containing quaternary ammonium monomer (dimethylaminododecyl methacrylate, DMADDM), and evaluate its physical performance and antifungal properties. The discs were prepared by incorporating DMADDM into the polymer liquid of a methyl methacrylate-based, heat-polymerizing resin at 0% (control), 5%, 10%, and 20% (w/w). Flexure strength, bond quality, surface charge density, and surface roughness were measured to evaluate the physical properties of resin. The specimens were incubated with C. albicans solution in medium to form biofilms. Then Colony-Forming Units, XTT assay, and scanning electron microscope were used to evaluate antifungal effect of DMADDM-modified resin. DMADDM modified acrylic resin had no effect on the flexural strength, bond quality, and surface roughness, but it increased the surface charge density significantly. Meanwhile, this new resin inhibited the C. albicans biofilm significantly according to the XTT assay and CFU counting. The hyphae in C. albicans biofilm also reduced in DMADDM-containing groups observed by SEM. DMADDM modified acrylic resin was effective in the inhibition of C. albicans biofilm with good physical properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Antimicrobial Denture Base Resin on Multi-Species Biofilm Formation

Our aims of the research were to study the antimicrobial effect of dimethylaminododecyl methacrylate (DMADDM) modified denture base resin on multi-species biofilms and the biocompatibility of this modified dental material. Candida albicans (C. albicans), Streptococcus mutans (S. mutans), Streptococcus sanguinis (S. sanguinis), as well as Actinomyces naeslundii (A. naeslundii) were used for biof...

متن کامل

Effect of an acrylic resin combined with an antimicrobial polymer on biofilm formation

OBJECTIVES The purpose of this study was to evaluate the antimicrobial activity of an acrylic resin combined with an antimicrobial polymer poly (2-tert-butylaminoethyl) methacrylate (PTBAEMA) to inhibit Staphylococcus aureus, Streptococcus mutans and Candida albicans biofilm formation. MATERIAL AND METHODS Discs of a heat-polymerized acrylic resin were produced and divided according to PTBAEM...

متن کامل

Biofilm-forming ability and adherence to poly-(methyl-methacrylate) acrylic resin materials of oral Candida albicans strains isolated from HIV positive subjects

PURPOSE This study evaluated the adhesion to acrylic resin specimens and biofilm formation capability of Candida albicans strains isolated from HIV positive subjects' oral rinse solutions. MATERIALS AND METHODS The material tested was a heat-cured acrylic resin (Acron Duo). Using the adhesion and crystal violet assays, 14 oral Candida albicans isolated from HIV-positive subjects and 2 referen...

متن کامل

Evaluation of Antimicrobial Properties of Conventional Poly(Methyl Methacrylate) Denture Base Resin Materials Containing Hydrothermally Synthesised Anatase TiO2 Nanotubes against Cariogenic Bacteria and Candida albicans

The purpose of this study was to investigate the antimicrobial properties of a conventionalpoly methyl methacrylate (PMMA) modified with hydrothermally synthesised titaniumdioxide nanotubes (TNTs). Minimum inhibitory concentration (MIC), minimum bactericidalconcentration (MBC), and minimum fungicidal concentrations (MFC) for planktonic cellsof the TiO2 nanotubes solution against Lactobacillus a...

متن کامل

“Comparative Evaluation Of Biofilm Development Of Candida Albicans On Abraded Surfaces Of Heat Cure PMMA And Flexi Denture Material”:An In Vitro Study

Purpose: Study was to compare the biofilm development of candida albicans on two different types of abraded surfaces of heat cure PMMA and flexi denture material. Materials And Methods: 4 blocks of each heat cure resin and flexible denture material were prepared of 10*10*10mm and 10*10*3mm in size respectively. All blocks were then subjected to abrasion with p100 grit size dry sand paper or wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017